Reducing Mixed Noise from Hyperspectral Images

نویسنده

  • Hemant Kumar Aggarwal
چکیده

This letter introduces a hyperspectral denoising algorithm based on spatio-spectral total variation. The denoising problem has been formulated as a mixed noise reduction problem. A general noise model has been considered which accounts for not only Gaussian noise but also sparse noise. Inherent structure of hyperspectral images has been exploited by utilizing 2D-total variation along spatial dimension and 1D-total variation along spectral dimension. The denoising problem has been formulated as an optimization problem whose solution has been derived using the split-Bregman approach. Experimental results demonstrates that proposed algorithm is able to reduce significant amount of noise from real noisy hyperspectral images. The proposed algorithm has been compared with existing state-of-the-art approaches. The quantitative and qualitative results demonstrate the superiority of proposed algorithm in terms of peak signal to noise ratio, structural similarity and the visual quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

Exploiting spatiospectral correlation for impulse denoising in hyperspectral images

This paper proposes a technique for reducing impulse noise from corrupted hyperspectral images. We exploit the spatiospectral correlation present in hyperspectral images to sparsify the datacube. Since impulse noise is sparse, denoising is framed as an L1-norm regularized L1-norm data fidelity minimization problem. We derive an efficient split Bregman based algorithm to solve the same. Experime...

متن کامل

Hyperspectral Image Segmentation via Frequency-Based Similarity for Mixed Noise Estimation

Accurate approximation of the signal-independent (SI) and signal-dependent (SD) mixed noise from hyperspectral (HS) images is a critical task for many image processing applications where the detection of homogeneous regions plays a key role. Most of the conventional methods empirically divide images into rectangular blocks and then select the homogeneous ones, but it might result in erroneous h...

متن کامل

Nonlinear filtering of hyperspectral images with anisotropic diffusion

A vectorial extension of the scalar anisotropic diffusion nonlinear filtering process applied on hyperspectral images is presented. In a first step, data are projected in a transformed space with a Maximum Noise Fraction transform, allowing the new components to be sorted in order of signal to noise ratio. The filtering is adapted to the signal to noise ratio of each component and a spectral di...

متن کامل

Adaptive noise estimation from highly textured hyperspectral images.

Accurate approximation of noise in hyperspectral (HS) images plays an important role in better visualization and image processing. Conventional algorithms often hypothesize the noise type to be either purely additive or of a mixed noise type for the signal-dependent (SD) noise component and the signal-independent (SI) noise component in HS images. This can result in application-driven algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016